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3 Department of Physics, North Carolina State University, Raleigh, NC 27603, USA

Received: 27 November 2006
Published online: 11 January 2007 – c© Società Italiana di Fisica / Springer-Verlag 2007
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Abstract. We discuss lattice simulations of light nuclei at leading order in the chiral effective field theory.
Using lattice pion fields and auxiliary fields, we include the physics of instantaneous one-pion exchange
and the leading-order S-wave contact interactions. We also consider higher-derivative contact interactions
which adjust the S-wave scattering amplitude at higher momenta. By construction our lattice path integral
is positive definite in the limit of exact Wigner SU(4) symmetry for any even number of nucleons. This
SU(4) positivity and the approximate SU(4) symmetry of the low-energy interactions play an important
role in suppressing sign and phase oscillations in Monte Carlo simulations. We assess the computational
scaling of the lattice algorithm for light nuclei with up to eight nucleons and analyze in detail calculations
of the deuteron, triton, and helium-4.

PACS. 21.30.-x Nuclear forces – 21.45.+v Few-body systems – 12.39.Fe Chiral Lagrangians

1 Introduction

The underlying theory of strong interactions, quantum
chromodynamics (QCD), describes the interactions of
quarks and gluons. While analytic calculations of the
properties of confined quarks and gluons inside hadrons
are not possible, a model-independent way of calculat-
ing observables directly from QCD is provided by lattice
field theory. Recent advances in lattice QCD have made
it possible to calculate the spectrum and properties of
various isolated hadrons. There has also been progress in
calculating low-energy hadronic interactions such as pion-
pion scattering [1–4]. Other hadronic interactions such as
nucleon-nucleon scattering are more difficult, but there
has been some promising recent work in this direction as
well [5–7].

Unfortunately, lattice QCD calculations of many-body
systems of nuclear and neutron matter or even few-body
systems beyond two nucleons are presently out of reach.
Such simulations would require pion masses at or near the
physical mass and lattices several times longer in each di-
mension than used in current simulations. But the greatest
challenge would be to overcome the exponentially small
signal-to-noise ratio for simulations at large quark num-
ber. For many-body systems this is manifested as complex

a e-mail: borasoy@itkp.uni-bonn.de

phase oscillations when adding a quark chemical poten-
tial. For few-body systems the calculation can be done at
zero chemical potential by measuring correlation functions
involving 3A-quark operators, where A is the number of
nucleons. However, here the signal-to-noise problem reap-
pears in the antisymmetrization over quarks and in the
small overlap between Monte Carlo configurations for the
QCD vacuum versus the A-nucleon ground state.

For few- and many-body systems in low-energy nuclear
physics one can make further progress by working directly
with hadronic degrees of freedom. There are several pos-
sible choices for the form of the nuclear forces and the
computational methods used to describe the interactions
of low-energy protons and neutrons.

For systems with four or fewer nucleons, a nu-
merically exact approach is provided by the Faddeev-
Yakubovsky integral equations. Three-nucleon contin-
uum observables as well as the triton and α-particle
binding energies [8] were extensively studied within
the Faddeev-Yakubovsky scheme based on a variety
of modern semi-phenomenological nucleon-nucleon po-
tential models including the CD-Bonn [9], CD-Bonn
2000 [10], Argonne V18 [11] and Nijmegen [12] poten-
tials. Three-nucleon forces were also incorporated using
the Tucson-Melbourne [13,14], Urbana-IX [15] and other
models. For a comprehensive review on the calculations in
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the three-nucleon continuum the reader is referred to [16].
The same computational scheme was applied to nuclear
forces derived in chiral effective field theory (ChEFT)
both at next-to-leading order (NLO) [17] and at next-to-
next-to-leading order (NNLO) [18] in the chiral expansion.
Applications of the low-momentum interaction potential
Vlow k [19–21] to few-nucleon systems are considered in
refs. [22,23]. Further computational techniques such as,
e.g., the expansion in hyperspherical harmonics [24], the
Lorentz integral transform method [25], the stochastic
variational method [26] and the Kohn variational ap-
proach [27] were also applied to few-nucleon systems.

For systems with more nucleons one must rely on
techniques such as Monte Carlo simulations or basis-
truncated eigenvector methods. There have been a num-
ber of Green’s Function Monte Carlo simulations of light
nuclei based on AV18 as well as other phenomenologi-
cal potentials, see for example [15,28–33]. A related tech-
nique implementing diffusion Monte Carlo with auxiliary
fields has been used to study the ground state of neu-
tron matter and neutron droplets [34–37]. The no-core
shell model (NCSM) is a different approach to light nuclei
which uses basis-truncated eigenvector methods. There
have been several NCSM calculations using various differ-
ent phenomenological potential models, cf. [38–41]. There
are also NCSM calculations which have used nuclear forces
derived from ChEFT [42,43]. Quite recently there has
been work in constructing a low-energy effective field the-
ory within the framework of truncated-basis states used
in the NCSM formalism [44]. A benchmark comparison of
many of the methods listed above as well as other tech-
niques can be found in [45]. A review article on various
methods used for light nuclei can be found in [46].

In this study we consider nuclear lattice simulations
of light nuclei using chiral effective theory. The nuclear
lattice approach addresses the few- and many-body prob-
lem in nuclear physics by applying non-perturbative lat-
tice methods to low-energy nucleons and pions. The chiral
effective Lagrangian is formulated on a Euclidean lattice
and the path integral is evaluated by Monte Carlo sam-
pling. Pions and nucleons are treated as point-like parti-
cles on the lattice sites, and π times the inverse lattice
spacing sets the cutoff scale in momentum space. By us-
ing hadronic degrees of freedom and concentrating on low-
energy physics, it is possible to probe larger volumes, lower
temperatures, and far greater numbers of nucleons than in
lattice QCD. In some cases the sign and complex phase os-
cillations in Monte Carlo simulations can be significantly
reduced or even completely eliminated.

The first study combining lattice methods with effec-
tive field theory for low-energy nuclear physics looked at
infinite nuclear and neutron matter at non-zero density
and temperature [47]. The approach we use here is based
on chiral effective field theory starting at leading order.
This lattice formalism was also used in [48] to study neu-
tron matter at non-zero temperature. We list some fea-
tures of the nuclear-lattice approach which seem promising
and distinguish it from other few- and many-body tech-
niques.

One unique feature of the lattice effective field theory
approach is the ability to study in the same formalism
both few- and many-body systems as well as zero- and
non–zero-temperature phenomena. A large portion of the
nuclear phase diagram can be studied using exactly the
same lattice action with exactly the same operator coef-
ficients. A second feature is the computational advantage
of many efficient Euclidean lattice methods developed for
lattice QCD and condensed-matter applications. This in-
cludes the use of Markov chain Monte Carlo techniques,
Hubbard-Stratonovich transformations [49,50], and non-
local updating schemes such as a hybrid Monte Carlo [51].
A third feature is the close theoretical link between nuclear
lattice simulations and chiral effective field theory. One
can write down the lattice Feynman rules and calculate
lattice Feynman diagrams using precisely the same action
used in the non-perturbative simulation. Since the lattice
formalism is based on chiral effective field theory we have
a systematic power-counting expansion, an a priori esti-
mate of errors for low-energy scattering, and a clear theo-
retical connection to the underlying symmetries of QCD.

Nuclear lattice simulations were used to study the tri-
ton at leading order in pionless effective field theory with
three-nucleon interactions [52]. In the present investiga-
tion we consider the physics of instantaneous one-pion
exchange and the leading-order S-wave contact interac-
tions. We also consider higher-derivative contact inter-
actions which adjust the S-wave scattering amplitude at
higher momenta. We calculate binding energies, radii, and
density correlations for the deuteron, triton, and helium-4,
and probe the computational scaling in systems with up
to eight nucleons.

2 Chiral effective field theory in the

few-nucleon sector

Chiral perturbation theory in the purely mesonic sector
has a rigorous chiral counting scheme. In the one-nucleon
sector a chiral counting scheme can be established by var-
ious means such as the heavy-baryon formulation [53,54]
or infrared regularization [55]. In each case Green’s func-
tions are expanded in increasing powers of pion masses
and small momenta, and the chiral expansion corresponds
to a loop expansion.

In the few-nucleon sector, however, one has to deal
with non-perturbative effects. Perturbation theory fails
at low energies in the few-nucleon sector due to en-
hanced contributions from reducible diagrams which con-
tain purely nucleonic intermediate states. In order to
circumvent this problem, one derives first the interac-
tion kernel (or effective potential) from all possible ir-
reducible terms without purely nucleonic intermediate
states [56,57]. The interaction kernel does not contain
small energy denominators and obeys the conventional
chiral counting scheme. The Green’s function is then ob-
tained by iterating the interaction kernel to infinite order
in a bound state or scattering state equation.
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At lowest order in the chiral expansion the effective
Lagrange density is

L =
1

2
∂µπ · ∂µπ −

1

2
m2
ππ

2 +N †i∂0N +N †
~∇2

2m
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− gA
2fπ
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·
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. (1)

We use the same notation as used in [58]. N is the
nucleon field with spin and isospin degrees of freedom.
The vector arrow in ~σ signifies the three-vector index
for spin. The boldface for τ and π signifies the three-
vector index for isospin. We take for our physical constants
m = 938.92MeV as the nucleon mass, mπ = 138.08MeV
as the pion mass, fπ = 93MeV as the pion decay con-
stant, and gA = 1.26 as the nucleon axial charge. In or-
der to reduce sign and complex phase oscillations in the
Monte Carlo calculation with auxiliary fields (see [59]) we
work with the leading-order contact interactions C and
CI rather than the more standard interaction coefficients
CS and CT corresponding with
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·
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. (2)

Both forms for the interactions are exactly the same if we
set

C = CS − 2CT , CI = −CT . (3)

From the effective Lagrangian in (1) the NN effective
potential can be derived by applying the method of uni-
tary transformations [60], Q-box expansion [61], or other
techniques [62,63]. At leading order (LO) the NN effec-
tive potential consists of the two contact interactions and
instantaneous one-pion exchange,

VLO = C + CI τ 1 · τ 2 −
(

gA
2fπ

)2

τ 1 · τ 2
~σ1 · ~q ~σ2 · ~q
~q 2 +m2

π

, (4)

where ~q = ~p ′ − ~p is the nucleon momentum transfer. We
can reproduce the desired iteration of VLO if we start with
the Lagrange density,

L = −1

2
~∇π · ·~∇π − 1

2
m2
ππ

2 +N †i∂0N +N †
~∇2

2m
N

− gA
2fπ

N†
τ ~σ · ·~∇πN − 1

2
C
(

N†N
)(

N†N
)

−1

2
CI
(

N†
τN
)

·
(

N†
τN
)

, (5)

and evaluate the NN scattering amplitude non-
perturbatively. We note that the pions have no time
derivatives. Therefore, they can only be exchanged instan-
taneously between nucleons and do not propagate in time.
Clearly, the Lagrangian in eq. (5) is not valid for exter-
nal pion fields. The two-nucleon Green’s function derived
from the path integral representation with this Lagrangian

reproduces the solution of the corresponding Lippmann-
Schwinger equation with the leading-order effective poten-
tial. Another advantage of treating pions this way is that
the nucleon self-energy exactly vanishes and the nucleon
mass is not renormalized.

3 Lattice notation

In this study we assume exact isospin symmetry and ne-
glect electromagnetic interactions. We use ~n to represent
integer-valued coordinate lattice vectors on a (3 + 1)-

dimensional space-time lattice and ~k to represent integer-
valued momentum lattice vectors. A subscripted “s” such
as in ~ns represents purely spatial lattice vectors. 0̂ denotes

the unit lattice vector in the time direction, and l̂s = 1̂, 2̂,
3̂ are unit lattice vectors in the spatial directions. a is the
spatial lattice spacing, L is the length of the cubic spatial
lattice in each direction, at is the lattice spacing in the
temporal direction, and Lt is the length in the temporal
direction. We define αt as the ratio between lattice spac-
ings, αt = at/a, and define h = αt/(2m). Throughout we
use dimensionless parameters and operators, which corre-
spond with physical values multiplied by the appropriate
power of a. Final results are presented in physical units
with the corresponding unit stated explicitly.

To avoid confusion we make explicit in our lattice no-
tation all spin and isospin indices. We use c and c∗ to
denote the anticommuting Grassmann variables for the
nucleons and a and a† to denote annihilation and creation
operators. We use the subscript notation







c↑,p
c↓,p
c↑,n
c↓,n






=







c0,0
c1,0
c0,1
c1,1






,







a↑,p
a↓,p
a↑,n
a↓,n






=







a0,0
a1,0
a0,1
a1,1






. (6)

The first subscript is for spin and the second subscript is
for isospin. We use τI with I = 1, 2, 3 to represent Pauli
matrices acting in isospin space and σS with S = 1, 2, 3
to represent Pauli matrices acting in spin space. We note
that on the lattice the spin symmetry is reduced to the
cubic subgroup SO(3,Z) of SO(3) while isospin symmetry
remains intact as the full SU(2) symmetry.

4 Path integral for free nucleons and

instantaneous pions

If we could take the continuum limit, the accuracy of our
calculation would be determined by the order k we choose
to truncate the chiral expansion. This would correspond
with (p/Λχ)

k, where p is a typical low-energy momentum
scale and Λχ = 4πfπ ' 1.2GeV the scale of spontaneous
chiral symmetry breakdown. However, taking the contin-
uum limit is not possible due to the non-perturbative
treatment of the chiral effective Lagrangian on the lattice
as this would require an infinite set of counterterms. The
lattice cutoff Λ must be chosen to remain below the scale
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kinetic energy
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Fig. 1. Suppression of finite-cutoff errors by introducing im-
proved actions for the nucleon kinetic energy.

LO interactions

standard action

LO interactions

O(a
2
)-improved

NLO interactions

standard action

Fig. 2. Hierarchy of interactions according to chiral order as
well as improvements to each order due to non-zero lattice
spacing.

Λχ. This, in turn, introduces an error of the general form
(p/Λ)k1(Λ/Λχ)

k2 due to the finite cutoff and missing coun-
terterms. Even for the free-nucleon case finite-cutoff errors
occur which can be traced back to the discretized lattice
propagator. In this analysis we use an O(a4)-improved ac-
tion for the lattice kinetic energy, as shown in fig. 1.

Similarly, the interactions in the continuum limit can
be organized in the chiral expansion as leading order, next-
to-leading order, etc. But again for a chosen chiral order
we may wish to include additional improvements to the
interactions which reduce the finite-cutoff errors. In this
analysis we start by considering the simple LO lattice ac-
tion without improvement, as shown in fig. 2. We note
that the diagram shown is a bit simplistic since the im-

provement terms may in general include corrections for
effects at non-zero lattice spacing such as broken Galilean
invariance, etc.

Throughout our discussion we consider both the path
integral formalism and the transfer matrix formalism. The
path integral formalism is useful for deriving the lattice
Feynman rules and auxiliary-field formulations, while the
transfer matrix is used for the Monte Carlo simulations
of light nuclei. We start with the path integral formalism.
Let ZN̄N be the lattice partition function for free nucleons

ZN̄N ∝
∫

DcDc∗ exp [−SN̄N (c, c∗)] , (7)

where
DcDc∗ =

∏

~n,i,j

dci,j(~n)dc
∗
i,j(~n). (8)

We use an O(a4)-improved lattice action with next-to-
next-to-nearest-neighbor hopping,
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+
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[

c∗i,j(~n)ci,j
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~n+3l̂s
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+c∗i,j(~n)ci,j
(

~n−3l̂s
)

]

. (9)

We expect the O(a4)-improvement in the lattice disper-
sion relation to be useful when measuring scattering phase
shifts on the lattice.

In this leading-order study we consider instantaneous
one-pion exchange and no other interactions involving pi-
ons. In our lattice formalism the pion field does not prop-
agate in time and does not couple to physical pions. This
allows to avoid the problem of non-perturbative dynami-
cal pion fields producing unrenormalized pion loops to all
orders. If, at some point later on, we wish to include in-
teractions with physical low-energy pions we simply insert
the corresponding operators with external pion fields.

The lattice action for free pions with purely instanta-
neous propagation is

Sππ(πI) = αt

(

m2
π

2
+ 3

)

∑

I=1,2,3

∑

~n

πI(~n)πI(~n)

−αt
∑

I=1,2,3

∑

~n,ls

πI(~n)πI
(

~n+ l̂s
)

. (10)

In order to simplify the Monte Carlo updating scheme
later in our discussion it is helpful at this point to define
a rescaled pion field,

π′I(~n) =
√
qππI(~n), (11)
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where

qπ = αt
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Then,
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In momentum space the action is

Sππ
(
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and so

∫
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LtL3

∑

~k

e−i
2π
Lt
kt·nte−i
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(
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where the pion propagator is

Dπ

(

~ks
)

=
1

1− 2αt
qπ
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cos
(

2πkls
L

) . (16)

The pion correlation function at spatial separation ~ns is
then

〈

π′I(~ns)π
′
I

(

~0
)

〉

=
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Dπ′Iπ
′
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(no sum on I)
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(
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. (17)

5 Pion-nucleon coupling

There are various ways to introduce spatial derivatives of
the pion field on the lattice. The simplest definition for
the gradient of π′I is to define a forward-backward lattice
derivative. For example, we can write

∂1π
′
I(~n) =

1

2

[

π′I
(

~n+ 1̂
)

− π′I
(

~n− 1̂
)]

. (18)

This is the method used in [48]. The disadvantage is that
it is a coarse derivative involving a separation distance of
two lattice units. We can avoid this if we think of the pion
lattice points as being shifted by −1/2 lattice unit from

the nucleon lattice points in each of the three spatial direc-
tions. For each nucleon lattice point ~nnucleon we associate
a pion lattice point ~npion,

~npion = ~nnucleon −
1

2
1̂− 1

2
2̂− 1

2
3̂. (19)

Then we have eight pion lattice points forming a cube
centered at ~nnucleon,

~npion, ~npion + 1̂, ~npion + 2̂, ~npion + 3̂,

~npion + 1̂ + 2̂, ~npion + 2̂ + 3̂,

~npion + 3̂ + 1̂, ~npion + 1̂ + 2̂ + 3̂. (20)

We use the same lattice vector notation ~n for both nucle-
ons and pions. However, for nucleon fields and auxiliary
fields to be introduced later ~n represents ~nnucleon while for
pion fields ~n refers to ~npion.

The eight vertices of the pion cube in (20) can be used
to define spatial derivatives of the pion field. For each
spatial direction S = 1, 2, 3, we have

∆Sπ
′
I(~n) =

1

4

∑

ν1,ν2,ν3=0,1

(−1)νS+1π′I(~n+ ~ν ),

~ν = ν11̂ + ν22̂ + ν33̂. (21)

The lattice pion-nucleon coupling in our lattice action is

SπN̄N (π′I , c, c
∗)=

gAαt
2fπ
√
qπ

∑

S,I=1,2,3

∆Sπ
′
I(~n)ρS,I(~n), (22)

where ρS,I(~n) is the spin-isospin density,

ρS,I(~n) =
∑

i,j,i′,j′=0,1

c∗i,j(~n) [σS ]ii′ [τI ]jj′ ci′,j′(~n). (23)

6 S-wave contact interactions

There are two S-wave contact interactions at lowest order.
Following [59] we choose the form

SN̄NN̄N (c, c∗) =
Cαt
2

∑

~n

[ρ(~n)]
2

+
CIαt
2

∑

I=1,2,3

∑

~n

[ρI(~n)]
2
, (24)

where ρ(~n) and ρI(~n) are the SU(4)-symmetric and
isospin densities, respectively,

ρ(~n) =
∑

i,j=0,1

c∗i,j(~n)ci,j(~n), (25)

ρI(~n) =
∑

i,j,j′=0,1

c∗i,j(~n) [τI ]jj′ ci,j′(~n). (26)

Since the isospin-singlet channel is more strongly attrac-
tive than the isospin-triplet channel, we anticipate the
signs for these coefficients to be C < 0 and CI > 0. This
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Tr
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will be confirmed in sect. 8, where the two-nucleon system
is studied in detail. As noted above, these can be written
in terms of the more familiar coefficients CS and CT using
the identity

C = CS − 2CT , CI = −CT . (27)

We can use the Gaussian integral identities
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2
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Let us define the auxiliary-field actions,

Sss(s, sI) =
1

2

∑

~n

s2(~n) +
1

2

∑

I=1,2,3

∑

~n

[sI(~n)]
2
, (30)

SsN̄N (s, sI , c, c
∗) = −

√

−Cαt
∑
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s(~n)ρ(~n)

−i
√

CIαt
∑

I=1,2,3

∑

~n

sI(~n)ρI(~n). (31)

Then, we have
∫

DsDsI exp [−Sss(s, sI)− SsN̄N (s, sI , c, c
∗)] ∝

exp [−SN̄NN̄N (c, c∗)] , (32)

where
DsDsI =

∏

~n,I

ds(~n)dsI(~n). (33)

If we put all the pieces together the full path integral
action at leading order is

ZLO∝
∫

DcDc∗Dπ′IDsDsI exp [−SLO(c, c∗, π′I , s, sI)] ,
(34)

where

SLO = SN̄N + Sππ + SπN̄N + Sss + SsN̄N . (35)

7 Transfer matrix with auxiliary fields

The transfer matrix is the analog at non-zero temporal
lattice spacing of the operator exp(−H∆t). In order to
derive the transfer matrix corresponding with the path
integral action SLO, we use the correspondence [64,65]

see eq. (36) above

for general functions Fi and antiperiodic boundary condi-
tions in the time direction, ci,j(~ns, Lt) = −ci,j(~ns, 0). The
: : symbols in (36) denote normal ordering. Let us define
the SU(4)-symmetric, isospin, and spin-isospin densities
written in terms of creation and annihilation operators,

ρa
†,a(~ns) =

∑

i,j=0,1

a†i,j(~ns)ai,j(~ns), (37)

ρa
†,a
I (~ns) =

∑

i,j,j′=0,1

a†i,j(~ns) [τI ]jj′ ai,j′(~ns), (38)

ρa
†,a
S,I (~ns) =

∑

i,j,i′,j′=0,1

a†i,j(~ns) [σS ]ii′ [τI ]jj′ ai′,j′(~ns). (39)

We also define the O(a4)-improved free-nucleon lattice
Hamiltonian

Hfree =
49

12m

∑

~ns,i,j

a†i,j(~ns)ai,j(~ns)

− 3

4m

∑

~ns,ls,i,j

[

a†i,j(~ns)ai,j
(

~ns+ l̂s
)

+a†i,j(~ns)ai,j
(

~ns− l̂s
)

]

+
1

40m

∑

~ns,ls,i,j

[

a†i,j(~ns)ai,j
(

~ns+2l̂s
)

+ a†i,j(~ns)ai,j
(

~ns−2l̂s
)

]

− 1

180m

∑

~ns,ls,i,j

[

a†i,j(~ns)ai,j
(

~ns+3l̂s
)

+ a†i,j(~ns)ai,j
(

~ns−3l̂s
)

]

. (40)

Using (36) the path integral with auxiliary fields can
be expressed in the transfer matrix formalism as

ZLO ∝
∫

Dπ′IDsDsI exp [−Sππ − Sss]

×Tr
{

M (Lt−1)(π′I , s, sI)× · · · ×M (0)(π′I , s, sI)
}

, (41)
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where

M (nt)(π′I , s, sI) =

: exp

{

−Hfreeαt−
gAαt

2fπ
√
qπ

∑

S,I

∆Sπ
′
I(~ns, nt)ρ

a†,a
S,I (~ns)

+
√

−Cαt
∑

~ns

s(~ns, nt)ρ
a†,a(~ns)

+i
√

CIαt
∑

I

∑

~ns

sI(~ns, nt)ρ
a†,a
I (~ns)

}

: . (42)

8 The two-nucleon system

For the two-nucleon system the entire linear space is
small enough for typical lattice volumes that we can find
the low-energy eigenstates on the lattice using iterative
sparse matrix eigenvector methods such as the Lanczos
method [66]. To do this calculation we construct the trans-
fer matrix with only nucleon fields. It is convenient to de-
fine

GS1S2
(~ns) =

∫

Dπ′I∆S1
π′I(~ns)∆S2

π′I(0) exp [−Sππ]
∫

Dπ′I exp [−Sππ]
(no sum on I)=

1

16

∑

ν1,ν2,ν3=0,1

∑

ν′
1
,ν′

2
,ν′

3
=0,1

(−1)νS1 (−1)ν
′
S2

×
〈

π′I(~ns + ~ν − ~ν ′)π′I
(

~0
)

〉

. (43)

The path integral can now be written as

ZLO ∝ Tr
{

M (Lt−1) × · · · ×M (0)
}

, (44)

where

M (nt) =: exp

{

−Hfreeαt −
1

2
Cαt

∑

~ns

[

ρa
†,a(~ns)

]2

−1

2
CIαt

∑

I

∑

~ns

[

ρa
†,a
I (~ns)

]2

+
g2Aα

2
t

8f2πqπ

∑

S1,S2,I

∑

~ns,1,~ns,2

×GS1S2
(~ns,1 − ~ns,2)ρa

†,a
S1,I

(~ns,1)ρ
a†,a
S2,I

(~ns,2)

}

: . (45)

We now calculate the two-nucleon spectrum in
a periodic cube of length L and use this information to
determine the contact interaction coefficients C and CI .
We make use of Lüscher’s formula [6,67,68] which relates
the two-particle energy levels in a periodic cube of length
L to the S-wave phase shift,

p cot δ0(p) =
1

πL
S(η), η =

(

Lp

2π

)2

, (46)

where S(η) is the three-dimensional zeta-function,

S(η) = lim
Λ→∞

[

∑

~n

θ
(

Λ2 − ~n2
)

~n2 − η − 4πΛ

]

. (47)

For |η| < 1 we can expand in powers of η,

S(η) = −1

η
+ lim

Λ→∞





∑

~n6=~0

θ
(

Λ2 − ~n2
)

~n2 − η − 4πΛ



 (48)

= −1

η
+ S0 + S1η

1 + S2η
2 + S3η

3 · · · , (49)

where

S0 = lim
Λ→∞





∑

~n6=~0

θ
(

Λ2 − ~n2
)

~n2
− 4πΛ



 , (50)

Sj =
∑

~n 6=~0

1

(~n2)
j+1

, j ≥ 1. (51)

The first few coefficients are

S0 = −8.913631, S1 = 16.532288,

S2 = 8.401924, S3 = 6.945808,

S4 = 6.426119, S5 = 6.202149,

S6 = 6.098184, S7 = 6.048263. (52)

Lüscher’s formula does not include cutoff effects or the
contribution from coupled higher partial waves for parti-
cles with spin. However, we can neglect such corrections
at asymptotically small momenta. For small momenta we
have the effective-range expansion,

p cot δ0(p) ≈ −
1

ascatt
+

1

2
r0p

2 + · · · , (53)

where ascatt is the scattering length and r0 is the effective
range. In terms of η, the energy of the two-body scattering
state is

E =
p2

m
=

η

m

(

2π

L

)2

. (54)

S is an analytic function of η near η = 0, and so we can
consider both E < 0 and E > 0. We decouple the spin-
singlet and spin-triplet contact interactions by expressing
C and CI as a linear combination of coefficients C1S0

and
C3S1

,

C = (3C1S0
+ C3S1

) /4, (55)

CI = (C1S0
− C3S1

) /4. (56)

The value of C3S1
is tuned to give the physical deuteron

binding energy, −2.224575(9)MeV. The value of C1S0
is

tuned using Lüscher’s formula to give the physical 1S0
scattering length, −23.76(1) fm.

At leading order in the two-nucleon system we expect
finite-cutoff errors to scale roughly as O(Λ−1) or O(a). On
the lattice we can relate this cutoff error to the probability
that both nucleons occupy the same lattice site. This lo-
calized two-nucleon state has a large positive expectation
value for the kinetic energy and a large negative expec-
tation value for the potential energy. Let E localized

2 be the
expectation value of the total energy. E localized

2 need not
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Table 1. Coefficients and S-wave parameters for a = (100MeV)−1.

C3S1
(MeV−2) C1S0

(MeV−2) r
1S0

0
(fm) a

3S1

scatt (fm) r
3S1

0
(fm)

at = (70MeV)−1 −5.714× 10−5 −5.021× 10−5 −0.179(7) 4.153(5) −0.48(2)

at = (200MeV)−1 −6.706× 10−5 −5.794× 10−5 0.71(2) 4.522(1) 0.30(2)

at = (10000MeV)−1 −7.151× 10−5 −6.126× 10−5 1.03(2) 4.664(1) 0.53(2)

Experiment − − 2.75(5) 5.424(4) 1.759(5)

Table 2. Properties of the deuteron for a = (100MeV)−1.

rd (fm) Qd (fm2)

at = (70MeV)−1 1.566(1) 0.144(1)

at = (200MeV)−1 1.668(1) 0.171(1)

at = (10000MeV)−1 1.736(1) 0.179(1)

Experiment 1.9671(6) 0.2859(3)

be small compared with the cutoff energy Λ2/(2m). There-
fore transfer matrix elements involving this state may have
a significant dependence on the temporal lattice spacing
even for a−1

t as large as the cutoff energy. This dependence
shows up clearly in the O(Λ−1) cutoff error, and we see
the effect in the following results.

For a = (100MeV)−1 and at = (70MeV)−1,
(200MeV)−1, (10000MeV)−1 we set the coefficients C3S1

and C1S0
using Lüscher’s formula. We also use Lüscher’s

formula to determine the effective range for the 1S0 partial
wave and both the scattering length and effective range for
the 3S1 partial wave. The results are shown in table 1.

Note that the values for C1S0
and C3S1

are reasonably
close to the ones found at NLO and NNLO in the contin-
uum formulation [69]. Also, within the pionless framework
both values should be identical in the Wigner symmetry
limit. The error bars on the lattice data in table 1 are
error estimates from the least-squares fit. Since we work
at leading order we do not expect agreement with the ex-
perimental values for the effective ranges. However it is
interesting to note that the effective ranges are actually
negative for the largest temporal lattice spacing. In the
following we explain how this happens.

For some small fixed Euclidean time interval ∆t con-
sider all transition amplitudes between two-nucleon states.
If at ¿ ∆t then there are many temporal lattice steps
in the time interval ∆t. Any transition amplitude involv-
ing states with two nucleons close together is enhanced
to some degree by the negative potential energy of the
delta-function potential. On the other hand, if at = ∆t
then there is only one temporal lattice step. In this case
only the forward matrix element for incoming and outgo-
ing localized two-nucleon states is enhanced by the delta-
function potential. This produces a sharp central peak in
the two-nucleon wave function where the nucleons overlap
and explains the decrease in effective range. By the same
reasoning we also expect a smaller value for the deuteron
root-mean-square radius rd. In table 2 we show results
for rd and the deuteron quadrupole moment, Qd, along

with corresponding experimental values. The experimen-
tal value quoted for rd is for the point proton root-mean-
square radius.

As expected the root-mean-square radius of the
deuteron is smaller than the physical value, and the devi-
ation is greater for larger values of at. The smaller radius
also results in a substantial reduction in the quadrupole
moment.

9 Zero-range clustering instability

We have found that the deuteron wave function at leading
order shows some deficiencies which presumably get fixed
at higher order in chiral effective field theory. But since we
now have in hand the coefficients of the leading-order con-
tact interactions for lattice spacing a = (100MeV)−1 and
at = (70MeV)−1, (200MeV)−1, (10000MeV)−1, we can
consider systems with more than two nucleons at lead-
ing order in chiral effective field theory. Unfortunately,
here we find more problems. In the helium-4 system we
discover that the ground state is severely overbound and
consists almost entirely of the quantum state with all four
nucleons occupying the same lattice site. This clustering
instability can be understood as the result of two con-
tributing factors. The first is that the chiral effective field
theory at leading order gives a poor description of S-wave
scattering above a center-of-mass momentum of 50MeV.
The leading-order contact interactions are momentum in-
dependent and, as a result, are too strong at high mo-
menta. The second is a combinatorial enhancement of
the contact interactions when more than two nucleons
occupy the same lattice site. This effect has been stud-
ied in two-dimensional large-N droplets with zero-range
attraction [70]. Similar effects have also been considered
in systems of higher-spin fermions in optical traps and
lattices [71,72]. To illustrate this we briefly discuss how
the problem arises in SU(4)-symmetric pionless theory at
leading order using a Hamiltonian lattice formalism.

Let Elocalized
1 be the expectation value for the kinetic

energy of a single nucleon localized on a single lattice site
and let V2 < 0 be the potential energy between two nu-
cleons on the same lattice site. If we fix the two-particle
scattering length then both E localized

1 and V2 scale linearly
with the cutoff energy,

Elocalized
1 ∼ −V2 ∼

Λ2

2m
, Λ = πa−1. (57)

A detailed calculation of V2 for infinite scattering length
can be found in [73]. The total energies associated with
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putting two, three, or four nucleons on the same lattice
site are

Elocalized
2 = 2Elocalized

1 + V2, (58)

Elocalized
3 = 3Elocalized

1 + 3V2, (59)

Elocalized
4 = 4Elocalized

1 + 6V2. (60)

An instability forms as we increase A because the kinetic
energy scales as the number of nucleons, A, while the po-
tential energy scales as

(

A
2

)

. Of course the Pauli exclusion
principle prevents more than four nucleons from sitting on
the same lattice site, and so the problem is most severe in
the four-nucleon system.

In the leading-order pionless theory it has been shown
that V2 < −Elocalized

1 [73]. Therefore Elocalized
3 is negative

and scales with the cutoff energy. This produces an in-
stability for the three-nucleon system in the absence of
three-body forces or other stabilizing effects. The insta-
bility of the triton for zero-range forces was first studied
by Thomas [74]. There have been a number of more re-
cent studies of the triton in pionless effective field theory
as well as more general three-body systems with short-
range interactions and long scattering lengths [52,75–81].
It has also been shown that when the cutoff dependence
in the three-nucleon system is removed using a three-
nucleon contact interaction, then the binding energy of
the four-nucleon system appears also to be cutoff indepen-
dent [82,83]. In our lattice Hamiltonian notation we de-
note V3 as the potential energy associated with the three-
nucleon contact interaction. The new localized energies
are then

Elocalized
2 = 2Elocalized

1 + V2, (61)

Elocalized
3 = 3Elocalized

1 + 3V2 + V3, (62)

Elocalized
4 = 4Elocalized

1 + 6V2 + 4V3. (63)

Clearly Elocalized
4 would be stabilized by 4V3 for suffi-

ciently large V3 > 0. However, for realistic nuclear bind-
ing energies, it was found that the desired cutoff inde-
pendence in helium-4 does not emerge until the cutoff
momentum Λ exceeds 8 fm−1 [83]. Unfortunately, this
high cutoff momentum makes it a difficult starting point
for lattice simulations of realistic light nuclei. A cutoff
momentum of 8 fm−1 corresponds with a lattice spacing
of about 0.4 fm. From a computational standpoint this
combination of short lattice spacing and strong repulsive
forces makes lattice simulations nearly impossible due to
sign and phase oscillations. Given these difficulties we try
a different approach. We keep the lattice spacing large,
a ∼ (100MeV)−1 ∼ 2 fm, and again consider chiral ef-
fective field theory at leading order. But, this time, we
introduce higher-derivative operators which improve the
S-wave scattering amplitude at higher momenta. We ex-
pect that this should remove the clustering instability in
the four-nucleon system.

10 Higher-derivative terms

As explained in the previous section, the interactions at
leading order with delta-function contact interactions are
too strong at large momenta. Their contribution would be
appropriately weakened by interactions of higher chiral or-
der. But a full investigation of higher-order contributions
is beyond the scope of this first exploratory study and
is deferred to future work. Instead we consider here the
effect of higher derivative terms which reduce cutoff er-
rors by improving the delta-function contact interaction.
We fix the problem of clustering instability by introduc-
ing an O(a2)-improved broadening for the leading contact
interactions C and CI , as illustrated in fig. 3. This is by
no means a full NLO calculation, but rather an LO calcu-
lation with O(a2)-improvement to reduce cutoff errors.

To this aim, we define the momentum-dependent den-
sities,

ρa
†,a(~qs) =

∑

~ns

ρa
†,a(~ns)e

i~qs·~ns , (64)

ρa
†,a
I (~qs) =

∑

~ns

ρa
†,a
I (~ns)e

i~qs·~ns , (65)

where ~qs is the spatial momentum on the lattice. We can
write ~qs as

~qs =
2π

L
~ks, (66)

where the components of ~ks are integers from 0 to L− 1.

The transfer matrixM (nt) with only nucleon fields was
defined in (45). The contact interactions inM (nt) have the

LO interactions

standard action

LO interactions

O(a
2
)-improved

NLO interactions

standard action

Fig. 3. Suppression of finite-cutoff errors by broadening the
leading-order contact interactions.
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form

−1

2
Cαt

∑

~ns

[

ρa
†,a(~ns)

]2

− 1

2
CIαt

∑

I=1,2,3

∑

~ns

[

ρa
†,a
I (~ns)

]2

=
1

L3

∑

~qs

[

− 1

2
Cαtρ

a†,a(~qs)ρ
a†,a(−~qs)

−1

2
CIαt

∑

I=1,2,3

ρa
†,a
I (~qs)ρ

a†,a
I (−~qs)

]

. (67)

We replace these by the momentum-dependent interac-
tions,

1

L3

∑

~qs

f
(

~qs
2
)

[

− 1

2
Cαtρ

a†,a(~qs)ρ
a†,a(−~qs)

−1

2
CIαt

∑

I=1,2,3

ρa
†,a
I (~qs)ρ

a†,a
I (−~qs)

]

, (68)

where the coefficient function f(~qs
2) is defined as

f
(

~qs
2
)

= f−1
0 exp

[

− b
∑

ls=1,2,3

(1− cos qls)

]

, (69)

and the normalization factor f0 is determined by the con-
dition

f0 =
1

L3

∑

~qs

exp

[

− b
∑

ls=1,2,3

(1− cos qls)

]

. (70)

The coefficient b is determined at a later stage when we
find the effective range. For small ~qs we see that f(~qs

2)
reduces to a Gaussian form,

f
(

~qs
2
)

≈ f−1
0 exp

(

− b
2
~qs

2

)

. (71)

We can introduce exactly the same momentum-
dependent interactions in the transfer matrix formalism
with auxiliary fields,

ZLO ∝
∫

Dπ′IDsDsI exp [−Sππ − Sss]

×Tr
{

M (Lt−1)(π′I , s, sI)× · · · ×M (0)(π′I , s, sI)
}

. (72)

To do this we replace

Sss =
1

2

∑

~n

s2(~n) +
1

2

∑

I

∑

~n

[sI(~n)]
2

(73)

by the non-local action

1

2

∑

~ns,~n′
s,nt

s(~ns, nt)f
−1
(

~ns − ~n′s
)

s
(

~n′s, nt
)

+
1

2

∑

I

∑

~ns,~n′
s,nt

sI(~ns, nt)f
−1
(

~ns − ~n′s
)

sI
(

~n′s, nt
)

. (74)

The function f−1 is defined as

f−1
(

~ns − ~n′s
)

=
1

L3

∑

~qs

1

f(~qs 2)
e−i~qs·(~ns−~n

′
s). (75)

When the auxiliary fields are integrated out we recover
the momentum-dependent interactions in (68).

11 The two-nucleon system revisited

Using the new transfer matrix with momentum-dependent
interactions we now revisit the two-nucleon system. Just
as before we set C3S1

and C1S0
to give the physi-

cal deuteron binding energy and physical 1S0 scatter-
ing length. We also tune the coefficient b so that when
C3S1

and C1S0
are determined, we also get the correct

value for the average effective range 1
2 (r

1S0

0 + r
3S1

0 ). For

a = (100MeV)−1 and at = (70MeV)−1 we find C3S1
=

−4.780×10−5MeV−2, C1S0
= −3.414×10−5MeV−2, and

b = 0.6. The new results are shown in tables 3 and 4. The
agreement with experimental values is now good. There
is a clear improvement over the earlier results shown in
tables 1 and 2.

We can probe the shape of deuteron wave function by
computing the nucleon density correlation function

〈

: ρa
†,a(~ns)ρ

a†,a
(

~0
)

:
〉

. (76)

If A is the total number of nucleons, then

A =
∑

~ns

〈

ρa
†,a(~ns)

〉

. (77)

We also find
∑

~ns

〈

: ρa
†,a(~ns)ρ

a†,a
(

~0
)

:
〉

=
∑

~ns

〈

ρa
†,a(~ns)ρ

a†,a
(

~0
)

〉

−
〈

ρa
†,a
(

~0
)

〉

= L−3
(

A2 −A
)

. (78)

Let us define the normalized density correlation function
as

Gρρ(~ns) = L3
(

A2 −A
)−1

〈

: ρa
†,a(~ns)ρ

a†,a
(

~0
)

:
〉

. (79)

Table 3. S-wave parameters.

r
1S0

0
(fm) a

3S1

scatt (fm) r
3S1

0
(fm)

Lattice 3.20(1) 5.30(1) 1.46(3)

Experiment 2.75(5) 5.424(4) 1.759(5)

Table 4. Properties of the deuteron.

rd (fm) Qd (fm2)

Lattice 1.989(1) 0.278(1)

Experiment 1.9671(6) 0.2859(3)
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Fig. 4. Density correlations in the xy-plane for a deuteron
with spin in the +z-direction.

Fig. 5. Density correlations in the yz-plane for a deuteron
with spin in the +z-direction.

In fig. 4, we showGρρ(~ns) for the deuteron in the xy-plane.
We have aligned the deuteron spin in the +z-direction.
Keeping the deuteron spin in the +z-direction, in fig. 5
we show Gρρ(~ns) in the yz-plane. A small asymmetry can
be seen between the y and z directions. This is a signal of
the deuteron quadrupole moment and can be seen more
easily in fig. 6, where we have taken an antisymmetric
combination under interchange of y and z.

12 Transfer matrix projection method for

light nuclei

We simulate light nuclei by using the Monte Carlo trans-
fer matrix projection method introduced in [84]. Since this
method may be unfamiliar, we first give an overview of
the calculation using continuum notation before describ-
ing the details of the lattice transfer matrix calculation.

-0.02

-0.015

-0.01

-0.005

0
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ρρ
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Fig. 6. A linear combination of density correlations in the yz-
plane that is antisymmetric under interchange of y and z. The
deuteron spin points in the +z-direction.

Let |Ψ free
Z,N 〉 be a Slater determinant of free-particle

standing waves in a periodic cube for Z protons and
N neutrons. We define A = Z + N as the total num-
ber of nucleons. Let HLO denote the Hamiltonian includ-
ing instantaneous one-pion exchange and the improved
higher-derivative contact interactions. Let HSU(4)6π be
the same Hamiltonian but with both CI and gA set to
zero. As the notation suggests, HSU(4)6π is invariant under
SU(4) Wigner symmetry. Wigner symmetry refers to an
idealized limit where spin and isospin degrees of freedom
can be interchanged and the SU(2) × SU(2) spin-isospin
symmetry is elevated to an SU(4) symmetry. Let us define
a trial wave function

|Ψ(t′)〉 = exp
[

−HSU(4)6πt
′
] ∣

∣Ψ free
Z,N

〉

. (80)

With this trial wave function we define the amplitude,

Z(t) = 〈Ψ(t′)| exp [−HLOt] |Ψ(t′)〉 , (81)

as well as the transient energy,

E(t) = − ∂

∂t
[lnZ(t)] . (82)

In limit of large t we get

lim
t→∞

E(t) = E0, (83)

where E0 is the energy of the lowest eigenstate |Ψ0〉 of
HLO with a non-zero inner product with |Ψ(t′)〉. In order
to compute the expectation value of some normal-ordered
operator O, we define

ZO(t) = 〈Ψ(t′)| exp [−HLOt/2] O exp [−HLOt/2] |Ψ(t′)〉 .
(84)

The expectation value of O for |Ψ0〉 can be computed in
the large-t limit,

lim
t→∞

ZO(t)

Z(t)
= 〈Ψ0|O |Ψ0〉 . (85)
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In this two-step approach we use exp[−HSU(4)6πt
′]

as an approximate inexpensive low-energy filter and
exp[−HLOt] as an exact low-energy filter. The projection
exp[−HSU(4) 6πt

′] is computationally inexpensive because
the path integral for leading-order pionless effective field
theory in the SU(4) limit is strictly positive for any even
number of nucleons [85,86]. Although there is no positiv-
ity theorem for odd numbers of nucleons, sign oscillations
are also suppressed in odd systems because it is only one
particle or one hole away from an even system with no
sign oscillations.

In the lattice transfer matrix formalism we construct
|Ψ(t′)〉 using

|Ψ(t′)〉 =
∫

Ds exp [−Sss(s)]

×M (Lto−1)

SU(4) 6π (s)×· · ·×M (0)
SU(4)6π(s)

∣

∣Ψ free
Z,N

〉

, (86)

where t′ = Ltoat.M
(i)
SU(4)6π(s) is the same asM (i)(π′I , s, sI)

except with gA = CI = 0. We have omitted the depen-
dence on π′I and sI since these completely decouple in
the SU(4) symmetric theory. The amplitude Z(t) is con-
structed using

Z(t) =

∫

Dπ′IDsDsI exp [−Sππ − Sss]

×〈Ψ(t′)|M (Lti−1)(π′I , s, sI)× · · ·
· · · ×M (0)(π′I , s, sI) |Ψ(t′)〉 , (87)

where t = Ltiat. In this case the full leading-order trans-
fer matrix is used. We compute ZO(t) by inserting the
normal-ordered operator O in the middle of the string of
transfer matrices,

ZO(t) =

∫

Dπ′IDsDsI exp [−Sππ − Sss]

×〈Ψ(t′)|M (Lti−1)(π′I , s, sI)× · · ·
· · · ×M (Lti/2)(π′I , s, sI)OM

(Lti/2−1)(π′I , s, sI)× · · ·
· · · ×M (0)(π′I , s, sI) |Ψ(t′)〉 . (88)

A schematic overview of the transfer matrix calculation is
shown in fig. 7.

Let |ψ1〉, · · · , |ψA〉 be the free-particle standing waves
comprising |Ψ free

Z,N 〉. We note that for the transfer matrices
in the auxiliary-field formalism there are no direct inter-
actions between particles, only single-nucleon operators
interacting with the background pion and auxiliary fields.
It is easier to see this fact if we pretend for the moment
that each of the A nucleons has an extra quantum number
which makes them distinguishable. Let us label the extra
quantum number as X, where X = 1, · · · , A. Then, we
have

a†i,j , ai,j →
{

a†i,j,X , ai,j,X

}

X=1,··· ,A
. (89)

We use an X subscript to indicate this replacement for
creation and annihilation operators. The transfer matri-

cesM
(nt)
SU(4) 6π andM (nt) factorize into transfer matrices for

OΨ
free

Ψ
free

02L
to

+ L
ti

SU(4) π

L
to

+ L
ti
/2 L

to
L

to
+ L

ti

full LO full LO SU(4) π

operator insertion for
expectation value

Z,N Z,N

Fig. 7. Overview of the various pieces of the transfer matrix
calculation.

each X,

M
(nt)
SU(4)6π →

∏

X=1,··· ,A

M
(nt)
SU(4)6π,X , (90)

M (nt) →
∏

X=1,··· ,A

M
(nt)
X . (91)

So long as the initial- and final-state wave functions are
completely antisymmetric in X, this error in quantum
statistics has no effect on the final amplitude. We can
write the full A-nucleon transfer matrix element as a de-
terminant of an A × A matrix of single-particle matrix
elements,

Mij(π
′
I , s, sI , t

′, t) = 〈ψi,X |M
(2Lto+Lti−1)

SU(4)6π,X × · · ·

· · · ×M (Lto+Lti )

SU(4)6π,X M
(Lto+Lti−1)

X × · · ·

· · · ×M (Lto )
X M

(Lto−1)

SU(4)6π,X × · · · ×M
(0)
SU(4)6π,X |ψj,X〉 . (92)

The indices i, j go from 1 to A. The calculation of Z(t)
now reduces to computing

Z(t)=

∫

Dπ′IDsDsI exp{−Sππ−Sss}detM(π′I , s, sI , t
′, t).

(93)
There are many different ways to compute the ampli-

tude ZO(t), and the most efficient method will depend on
the operator O. Insertions of an operator measuring spa-
tial difermion pair correlations was discussed in [87]. Here
we consider an operator that measures spatial correlations
of the total nucleon density,

O =: ρa
†,a(~ns)ρ

a†,a
(

~0
)

: . (94)

For this operator it is convenient to use the identity

O = lim
ε1,ε2→0

∂

∂ε1

∂

∂ε2
M(ε1, ε2), (95)

where

M(ε1, ε2) = : exp

[

ε1
∑

i,j

a†i,j(~ns)ai,j(~ns)

+ε2
∑

i,j

a†i,j
(

~0
)

ai,j
(

~0
)

]

: . (96)

This is useful because M(ε1, ε2) itself looks like a transfer
matrix with only single-nucleon operators. Let us define
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the new single-particle matrix elements,

Mij(π
′
I , s, sI , t

′, t, ε1, ε2) = 〈ψi,X |M
(2Lto+Lti−1)

SU(4)6π,X × · · ·

· · · ×M (Lto+Lti )

SU(4) 6π,X M
(Lto+Lti−1)

X × · · ·

· · · ×M (Lto+Lti/2)

X MX(ε1, ε2)M
(Lto+Lti/2−1)

X × · · ·

· · · ×M (Lto )
X M

(Lto−1)

SU(4)6π,X × · · · ×M
(0)
SU(4)6π,X |ψj,X〉 . (97)

We then find

ZO(t) = lim
ε1,ε2→0

∂

∂ε1

∂

∂ε2

∫

Dπ′IDsDsI

× exp {−Sππ − Sss} detM(π′I , s, sI , t
′, t, ε1, ε2). (98)

We use hybrid Monte Carlo to update the fields π′I , s,
sI [51]. We introduce conjugate fields pπ′

I
, ps, psI and use

molecular-dynamics trajectories to generate new configu-
rations for pπ′

I
, ps, psI , π

′
I , s, sI , which keep

HHMC =
1

2

∑

I,~n

p2π′
I
(~n) +

1

2

∑

~n

p2s(~n)

+
1

2

∑

I,~n

p2sI (~n) + V (π′I , s, sI) (99)

constant, where

V (π′I , s, sI) = Sππ + Sss

− log {|detM(π′I , s, sI , t
′, tend)|} . (100)

tend denotes the largest value of t being considered.
Upon completion of each molecular-dynamics trajectory,
we apply a Metropolis accept or reject step for the new
configuration according to the probability distribution
e−HHMC . This process of molecular-dynamics trajectory
and Metropolis step is repeated many times. Each time
for the current configuration, C, we measure

eiθ(C) = detM(π′I , s, sI , t
′, tend)

|detM(π′I , s, sI , t
′, tend)|

, (101)

Z(t, C) = detM(π′I , s, sI , t
′, t)

|detM(π′I , s, sI , t
′, tend)|

, (102)

and

ZO(ε1, ε2, C) =
detM(π′I , s, sI , t

′, tend, ε1, ε2)

|detM(π′I , s, sI , t
′, tend)|

. (103)

We take the ensemble averages for each measurement and
form the ratios

Z(t)

Z(tend)
=
〈Z(t, C)〉
〈eiθ(C)〉 , (104)

and

ZO(tend)

Z(tend)
= lim

ε1,ε2→0

∂

∂ε1

∂

∂ε2

〈ZO(ε1, ε2, C)〉
〈eiθ(C)〉 . (105)

The ground-state energy E0 is extracted using

lim
tend→∞

Z(tend −∆t)
Z(tend)

= exp (E0∆t) , (106)

and the expectation value 〈Ψ0|O|Ψ0〉 is calculated using

lim
tend→∞

ZO(tend)

Z(tend)
= 〈Ψ0|O |Ψ0〉 . (107)

13 Numerical checks using the two-nucleon

system

We have already calculated properties of the deuteron us-
ing the transfer matrix with pions and auxiliary fields
integrated out. In this section we make use of the two-
nucleon system as a high-precision test of the transfer
matrix Monte Carlo code. We calculate the same observ-
ables using both the Monte Carlo code and the exact
transfer matrix, which is referred to as “Exact” method
in the following. We use the lattice parameters defined
previously, a = (100MeV)−1, at = (70MeV)−1, C3S1

=

−4.780×10−5MeV−2, C1S0
= −3.414×10−5MeV−2, and

b = 0.6. We set L = 3, Lto = 2, Lti = 2. We consider a
small system so that the stochastic error is small enough
to detect disagreement at the 0.1%–1% level.

For the first test we consider |Ψ free
Z,N 〉 with Z = 0,

N = 2. The standing waves ψ1,2 comprising |Ψ free
Z,N 〉 are

〈0| ai,j(~ns) |ψ1〉 = L−3/2δi,0δj,1,

〈0| ai,j(~ns) |ψ2〉 = L−3/2δi,1δj,1. (108)

This corresponds with a Jz = 0, J = 0 dineutron system
with zero total momentum. We compute E(t) as well as
the density correlation

Gρρ(~ns) = L3
(

A2 −A
)−1

〈

: ρa
†,a(~ns)ρ

a†,a
(

~0
)

:
〉

. (109)

From Gρρ(~ns) we can determine the root-mean-square ra-
dius rRMS as well as the quadrupole moment Q. The re-
sults for Gρρ(~ns) are shown in table 5 and the results for
E(t), rRMS, and Q are shown in table 6.

Table 5. Gρρ(~ns) for the Jz = 0, J = 0 dineutron system.

~ns Monte Carlo Exact

(0,0,0) 0.0960(3) 0.09575

(1,0,0) 0.04506(5) 0.04508

(0,1,0) 0.04515(6) 0.04508

(0,0,1) 0.04500(5) 0.04508

(0,1,1) 0.03354(4) 0.03363

(1,0,1) 0.03365(4) 0.03363

(1,1,0) 0.03358(6) 0.03363

(1,1,1) 0.02876(4) 0.02878
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Table 6. E(t), rRMS, and Q for the Jz = 0, J = 0 dineutron
system.

Monte Carlo Exact

E(t) (MeV) −5.84(9) −5.917

rRMS (fm) 1.402(4) 1.4015

|Q| (fm2) < 10−5 0

Table 7. Gρρ(~ns) for the Jz = 1, J = 1 deuteron system.

(nx, ny, nz) Monte Carlo Exact

(0,0,0) 0.1230(3) 0.12262

(1,0,0) 0.04233(4) 0.04240

(0,1,0) 0.04247(5) 0.04240

(0,0,1) 0.05563(5) 0.05572

(0,1,1) 0.03415(5) 0.03422

(1,0,1) 0.03423(3) 0.03422

(1,1,0) 0.02764(4) 0.02766

(1,1,1) 0.02650(3) 0.02649

Table 8. E(t), rRMS, and Q for the Jz = 1, J = 1 deuteron
system.

Monte Carlo Exact

E(t) (MeV) −9.26(9) −9.311

rRMS (fm) 0.6957(2) 0.69564

Q (fm2) 0.1026(2) 0.10283

The final values are not of physical relevance since the
volume and number of time steps are very small. The im-
portant result is that we find no disagreement between
Monte Carlo results and the exact results beyond the
stochastic error level.

For the second test we consider |Ψ free
Z,N 〉 with Z = 1,

N = 1. This time the standing waves comprising |Ψ free
Z,N 〉

are

〈0| ai,j(~ns) |ψ1〉 = L−3/2δi,0δj,1,

〈0| ai,j(~ns) |ψ2〉 = L−3/2δi,0δj,0. (110)

This corresponds with a deuteron system with Jz = 1,
J = 1 and zero total momentum. The results for Gρρ(~ns)
are shown in table 7 and the results for E(t), rRMS, and
Q are shown in table 8.

Again the final values are not of physical relevance
since the volume and number of time steps are small. We
find no disagreement between Monte Carlo results and the
exact results beyond the stochastic error level.

14 Results for the triton

In our calculations we assume isospin symmetry and
so our results for helium-3 and the triton will be the
same. We choose to compare with experimental data for
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Fig. 8. The transient energy for the triton system as a function
of imaginary time t.

the triton since it is not affected by electrostatic repul-
sion. For our simulations we use the lattice parameters
a = (100MeV)−1, at = (70MeV)−1, C3S1

= −4.780 ×
10−5MeV−2, C1S0

= −3.414× 10−5MeV−2, and b = 0.6.
We set L = 5, Lto = 8 and vary Lti from 2 to 10. The
standing waves comprising |Ψ free

Z,N 〉 are

〈0| ai,j(~ns) |ψ1〉 = L−3/2δi,0δj,1,

〈0| ai,j(~ns) |ψ2〉 = L−3/2δi,0δj,0,

〈0| ai,j(~ns) |ψ3〉 = L−3/2δi,1δj,1. (111)

This corresponds to a triton system with Jz = 1
2 , J = 1

2
and total momentum zero.

For each value of Lti a total of about 5 × 106 hybrid
Monte Carlo trajectories are generated by 2048 processors,
each running completely independent trajectories. Aver-
ages and stochastic errors are computed by comparing the
results of all 2048 processors. In fig. 8 we show the triton
energy as a function of imaginary time t. The error bars
denote the stochastic error. To remove the transient signal
of higher-energy states, we fit E(t) to a decaying exponen-
tial form at large t,

E(t)→ E0 + ce−∆Et. (112)

A least-squares fit gives an asymptotic value E0 =
−8.9(2)MeV. Our result is within 5% agreement with the
experimental value of −8.48MeV. Note that the triton
appears to be overbound. However, for the triton, the lat-
tice volume of (9.85 fm)3 that we use might still be too
small and finite-volume effects can possibly occur. In this
case increasing the lattice volume would lead to a slightly
less bound triton. Both finite-volume effects and the sys-
tematic inclusion of higher chiral orders in the effective
potentials will be investigated in future work.

We also measure the nucleon density correlation
Gρρ(~ns). In fig. 9 we showGρρ(~ns) in the xy-plane at imag-
inary time t = 0.143MeV−1. From Gρρ(~ns) we can also
extract the root-mean-square radius for the total nucleon



B. Borasoy et al.: Lattice simulations for light nuclei: Chiral effective field theory at leading order 119

Fig. 9. The nucleon density correlation Gρρ(~ns) for the triton
in the xy-plane at imaginary time t = 0.143MeV−1.
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Fig. 10. The triton root-mean-square radius for total nucleon
density versus imaginary time t.

density. In fig. 10 we show the triton root-mean-square
radius for the nucleon density as a function of imaginary
time t. We again fit to a decaying exponential form,

rRMS(t)→ rRMS + c′e−∆E
′t, (113)

and extract an asymptotic value of 2.27(7) fm. This
is about 30% larger than the experimental value of
1.755(9) fm for the root-mean-square radius of the electric
charge [88] and the point proton root-mean-square radius
1.60 fm [46]. Similar values for the triton root-mean-square
radius are also obtained in the pionless framework [89].

15 Results for helium-4

For our simulations for helium-4 we use the same lattice
parameters a = (100MeV)−1, at = (70MeV)−1, C3S1

=
−4.780×10−5MeV−2, C1S0

= −3.414×10−5MeV−2, and
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Fig. 11. The transient energy for helium-4 as a function of
imaginary time t.

Fig. 12. The nucleon density correlation Gρρ(~ns) for helium-4
in the xy-plane at imaginary time t = 0.143MeV−1.

b = 0.6. We again set L = 5, Lto = 8 and vary Lti from 2
to 10. This time the standing waves comprising |Ψ free

Z,N 〉 are

〈0| ai,j(~ns) |ψ1〉 = L−3/2δi,0δj,1,

〈0| ai,j(~ns) |ψ2〉 = L−3/2δi,0δj,0,

〈0| ai,j(~ns) |ψ3〉 = L−3/2δi,1δj,1,

〈0| ai,j(~ns) |ψ4〉 = L−3/2δi,1δj,0. (114)

This corresponds with a helium-4 system with Jz = 0,
J = 0 and total momentum zero. For each value of Lti
we again produce about 5 × 106 hybrid Monte Carlo
trajectories using 2048 processors running independent
trajectories.

In fig. 11 we show the energy for helium-4 as a func-
tion of imaginary time. If we fit E(t) to a decaying ex-
ponential form at large t we find an asymptotic value
of −21.5(9)MeV. This is about 25% smaller in magni-
tude than the experimental result of −28.296MeV. Note
that we compare directly with the experimental value and
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Fig. 13. The helium-4 root-mean-square radius for total nu-
cleon density versus imaginary time t.

have not corrected for small corrections due to electro-
magnetic effects. In fig. 12 we show the nucleon density
correlation Gρρ(~ns) in the xy-plane at imaginary time
t = 0.143MeV−1. From Gρρ(~ns) we compute the root-
mean-square radius for the total nucleon density, and in
fig. 13 we show the helium-4 root-mean-square radius for
the total nucleon density as a function of imaginary time t.
Fitting to a decaying exponential form we find an asymp-
totic value of rRMS = 1.50(14) fm. This is within 10% of
the experimentally observed value of 1.673(1) fm for the
root-mean-square radius for the electric charge [90] and
the point proton root-mean-square radius 1.47 fm [46].

16 Discussion

16.1 Room for more improvement

The lattice calculations in this study used leading-
order chiral effective field theory with improved contact
interactions of the form

f(~qs
2)

[

− 1

2
Cαtρ

a†,a(~qs)ρ
a†,a(−~qs)

−1

2
CIαt

∑

I=1,2,3

ρa
†,a
I (~qs)ρ

a†,a
I (−~qs)

]

, (115)

where

f(~qs
2) = f−1

0 exp

[

− b
∑

ls=1,2,3

(1− cos qls)

]

, (116)

f0 =
1

L3

∑

~qs

exp

[

− b
∑

ls=1,2,3

(1− cos qls)

]

. (117)

The three unknown constants C, CI , b were determined
using the deuteron binding energy, 1S0 scattering length,

and the average effective range 1
2 (r

1S0

0 + r
3S1

0 ). The scat-
tering lengths and effective ranges were computed using

Lüscher’s formula. We used only one value for the lattice
spacing, a = (100MeV)−1 and at = (70MeV)−1. The
simulations for triton and helium-4 were done at only one
volume, a cubical lattice with length L = 5 or 9.85 fm. In
future studies both the dependence on the lattice spacings
and finite volume should be investigated in some detail.

Lattice results for the deuteron root-mean-square ra-
dius and quadrupole moment agree with experimental val-
ues at the 5% level. The lattice calculation of the triton
binding energy agrees with experiment to within 5%, while
the triton root-mean-square radius is larger by about 30%.
For helium-4 we find the binding energy is about 25%
smaller than experiment, while the root-mean-square ra-
dius agrees within 10%. This is clear improvement over the
first attempt with zero-range contact interactions which
led to a clustering instability in the four-nucleon system.
However, in order to make a more rigorous statement we
also have to consider the full set of interactions which
arise at next-to-leading order in chiral effective field the-
ory. We will discuss this procedure in future work.

16.2 Computational scaling

The lattice transfer matrix algorithm has several sub-
routines which scale differently with the number of nu-
cleons A, the spatial volume L3, and the total number
of time steps Lt = 2Lto + Lti . Multiplication of the
transfer matrices at each time step on the one-particle
states scales as A × L3 × Lt. Constructing the A × A
matrix M(π′I , s, sI , t

′, t) from the inner products of the
one-particle states scales as A2×L3, while calculating the
determinant of M(π′I , s, sI , t

′, t) scales as A3 using LU
decomposition. The molecular dynamics trajectories for
the hybrid Monte Carlo updates involves computing the
derivatives of HHMC with respect to pπ′

I
, ps, psI , π

′
I , s, sI .

The calculation of these derivatives require various loops
which scale as L3 × Lt, L6 × Lt, and A2 × L3 × Lt.

With the same lattice parameters used in our triton
and helium-4 simulations, we investigate the computa-
tional scaling for the transfer matrix algorithm as a func-
tion of the number of nucleons A. We use L = 5, Lto = 8,
Lti = 10 and the free-particle standing waves

〈0| ai,j(~ns) |ψ1〉 = L−3/2δi,0δj,1,

〈0| ai,j(~ns) |ψ2〉 = L−3/2δi,0δj,0,

〈0| ai,j(~ns) |ψ3〉 = L−3/2δi,1δj,1,

〈0| ai,j(~ns) |ψ4〉 = L−3/2δi,1δj,0,

〈0| ai,j(~ns) |ψ5〉 = L−3/221/2 cos

(

2πnz
L

)

δi,0δj,1,

〈0| ai,j(~ns) |ψ6〉 = L−3/221/2 cos

(

2πnz
L

)

δi,0δj,0,

〈0| ai,j(~ns) |ψ7〉 = L−3/221/2 cos

(

2πnz
L

)

δi,1δj,1,

〈0| ai,j(~ns) |ψ8〉 = L−3/221/2 cos

(

2πnz
L

)

δi,1δj,0. (118)
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Fig. 14. CPU time versus the number of nucleons, A, mea-
sured relative to the A = 2 deuteron system.
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The initial state |Ψ free
Z,N 〉 is composed of all free-particle

standing waves |ψi〉 with i ≤ A. For A = 2 this is the
deuteron system, for A = 3 the triton system, for A = 4
helium-4, for A = 5 helium-5, for A = 6 lithium-6, for
A = 7 lithium-7, and for A = 8 beryllium-8. We note that
for A > 4 the momentum of |Ψ free

Z,N 〉 is not exactly zero but
rather a wavepacket with a small spread in momentum
centered around zero momentum.

In fig. 14 we show the CPU times for A = 2, · · · , 8
relative to the CPU time for A = 2 with the same number
of hybrid Monte Carlo trajectories. We see that for A ≤ 8
the CPU time is approximately linear in A. This suggests
that the subroutines which scale as A×L3×Lt dominate
the CPU time for the simulation for A ≤ 8.

In fig. 15 we show the average phase 〈eiθ〉 as defined
in eq. (101) versus the number of nucleons. We note the
relative maxima in 〈eiθ〉 at multiples of 4. This can be
explained by the suppression of sign and phase oscilla-
tions due to approximate SU(4) symmetry. The SU(4)
suppression of oscillations is strongest for systems with
equal numbers of spin-up and spin-down protons and neu-
trons. The results for the CPU time and average phase

indicate that simulations of light nuclei with A ≤ 8 can in
fact be performed without much difficulty using the Monte
Carlo transfer matrix algorithm presented here. We plan
to pursue these studies in future work.

17 Summary

We have described simulations of light nuclei on the lattice
using a transfer matrix projection Monte Carlo method
at leading order in chiral effective field theory. We in-
cluded lattice pion fields and auxiliary fields to repro-
duce the physics of instantaneous one-pion exchange and
the leading-order S-wave contact interactions. To avoid
a clustering instability we also included higher-derivative
contact interactions which adjust the S-wave scatter-
ing amplitude at higher momenta. There are a total of
three unknown constants, C, CI , b, and these were de-
termined using the deuteron binding energy, 1S0 scatter-

ing length, and the average effective range 1
2 (r

1S0

0 + r
3S1

0 ).
We find agreement between lattice results and experimen-
tal data at the 5% level for all calculated properties of
the deuteron. The lattice result for the triton binding en-
ergy agrees with experiment to within 5% and the triton
root-mean-square radius is within 30%. For helium-4 the
binding energy is within 25% while the root-mean-square
radius agrees within 10%. We expect that the description
will improve when higher-derivative operators are treated
systematically by matching phase shifts on the lattice at
higher momentum. We have determined that the simu-
lations for light nuclei with up to eight nucleons can be
done without much difficulty using the lattice methods
described here.
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13. S.A. Coon, W. Glöckle, Phys. Rev. C 23, 1790 (1981).
14. S.A. Coon, H.K. Han, Few Body Syst. 30, 131 (2001)

nucl-th/0101003.
15. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C.

Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997)
nucl-th/9705009.
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